Zakład Fizyki Makromolekularnej
Strona główna
Zespół
Badania
Aparatura
Seminaria
Publikacje
Nasze
konferencje
Aktywność
konferencyjna
Projekty
Najbliższe
wydarzenia
Programy
Linki


1.

Strankowska J., Fojud Z., Jurga S., Strankowski M., White J.L.

Polymer-dependent layer structures in montmorillonite nanocomposites We have studied structural differences among tetrahedral and octahedral sodium Montmorillonite layer arrangements in naturally occurring and synthetic montmorillonite clay minerals, as well as their poly(ethylene oxide) and poly(epsilon-coprolatone) polymer nanocomposites.

Journal of Analytical Science & Technology, 2(A) , A22-A30 (2011)

DOI: 10.5355/JAST.2011.A22   (Pobrano:  aktualizowanie)


2.

Makrocka-Rydzyk M., Wypych A., Szpotkowski K., Kozak M., Jurga S., Gao H.F., Cho H.Y., Matyjaszewski K.

Structural studies of poly(butyl acrylate) - poly(ethylene oxide) miktoarm star polymers Structural behavior of miktoarm star polymers comprising poly(butyl acrylate) (PBA) and poly(ethylene oxide) (PEO) arms was studied by means of Differential Scanning Calorimetry (DSC), Wide Angle X-Ray Scattering (WAXS), Polarized Optical Microscopy (POM) and Fourier Transform Infrared Spectroscopy (FTIR) methods. The aim of this study was to correlate changes in the composition of the arms of the PBA/PEO miktoarm star polymers with their structures. As a consequence of increasing PBA content, the decrease in crystallinity of the studied PBA/PEO heteroarm star copolymers was observed. Regardless of the copolymer composition, fraction of oxyethylene units in the crystalline PEO phase was similar in all investigated systems. The POM images showed spherulitic morphology of the materials having low PBA content, while an increase in PBA arms fraction leads to the formation of less ordered structures. The analysis of FTIR vibrational spectrum indicates helical conformation of PEO chains in the crystalline phase. Isothermal crystallization studies carried out using the FTIR technique suggest the existence of isolated domains in the nanoscopic scale of investigated materials.

Polymer, 52(24) , 5513-5520 (2011)

DOI: 10.1016/j.polymer.2011.09.020   (Pobrano:  aktualizowanie)


3.

Kozak M., Paszkowicz W., Piszora P.

Synchrotron radiation studies in Poland The 10th International School and Symposium on Synchrotron Radiation in Natural Science (ISSRNS)

Radiation Physics and Chemistry, 80(10) , 999-1000 (2011)

DOI: 10.1016/j.radphyschem.2011.06.003   (Pobrano:  aktualizowanie)


4.

Pietralik Z., Taube M., Balcerzak M., Skrzypczak A., Kozak M.

MAX-Lab Activity Report 2010, , 284-285 (2011)

WWW: https://www.maxlab.lu.se/sites/default/files/MAX_AR2010_web_0.pdf   (Pobrano:  2011-09-22)


5.

Pietralik Z., Taube M., Kozak A., Wieczorek D., Zielinski R., Kozak M.

MAX-Lab Activity Report 2010, , 286-288 (2011)

WWW: https://www.maxlab.lu.se/sites/default/files/MAX_AR2010_web_0.pdf   (Pobrano:  2011-10-18)


6.

Pajzderska A., Czarnecki P., Embs J.P., Gonzalez M.A., Juranyi F., Krawczyk J., Peplińska B., Wąsicki J.

A study of out-of-plane cation dynamics in a bis-thiourea pyridinium chloride inclusion compound The out-of-plane motion of the pyridinium cation in the bis-thiourea pyridinium chloride inclusion compound has been studied in a wide temperature range using (1)H NMR, dielectric spectroscopy and quasielastic neutron scattering. The geometry of this motion is obtained from the Q-dependence of the elastic incoherent structure factor determined from the quasielastic neutron scattering measurements. We find that the pyridinium cation performs out-of-plane reorientations around the axis passing through two opposite atoms of the ring. The correlation times as a function of temperature were measured in the three known crystallographic phases, finding a good agreement between the three techniques employed. The activation energy for this motion changes from 5 +/- 1 kJ mol(-1) in the low-temperature phase to 1.2 +/- 0.2 kJ mol(-1) in the intermediate and high-temperature phases.

Physical Chemistry Chemical Physics, 13(19) , 8908-8914 (2011)

DOI: 10.1039/c0cp02716b   (Pobrano:  aktualizowanie)


7.

Mielcarek J., Nowak D.M., Pajzderska A., Peplińska B., Wąsicki J.

A hybrid method for estimation of molecular dynamics of diazepam-density functional theory combined with NMR and FT-IR spectroscopy Reorientation of the molecule of diazepam was investigated by calorimetric methods, IR absorption and NMR. The investigation of dynamics was complemented by density functional study (DFT) of vibrational frequencies and infrared intensities, calculations of steric hindrances and Monte Carlo simulations. The results indicated the occurrence of reorientation jumps of the CH3 group and conformational motion of the benzodiazepine ring. The activation parameters of the methyl group reorientation were determined and the activation barrier obtained was in good agreement with the theoretically estimated value. The FT-IR spectra were assigned using results of DFT calculations.
(C) 2010 Elsevier B.V. All rights reserved.

International Journal of Pharmaceutics , 404(1-2) , 19-26 (2011)

DOI: 10.1016/j.ijpharm.2010.10.044   (Pobrano:  aktualizowanie)


8.

Jancelewicz M., Fojud Z., Waszkowiak W., Jurga S.

Local mobility in grafted polydimethylsiloxane melts Spin-lattice relaxation time constants T(1) were studied for low-molecular-weight linear and grafted polydimethylsiloxane over a wide temperature and frequency range Quantitative evaluations of proton T(1) measurements indicated two relaxation processes anisotropic rotation of methyl groups around the Si-C bond (low temperature process) and motions of the PDMS side-chains connected with the glass transition (high temperature process) Additional analyses of the T(1) relaxation dispersion profiles revealed specific local segment fluctuation times which are characteristic of the coherent motions in the grafted polymer chains.
(C) 2010 Elsevier Ltd All rights reserved

European Polymer Journal, 47(1) , 48-51 (2011)

DOI: 10.1016/j.eurpolymj.2010.10.032   (Pobrano:  aktualizowanie)


Zakład Fizyki Makromolekularnej, Wydział Fizyki UAM, ul. Umultowska 85, 61-614 Poznań    Fax: +48 61-829-5245, Email:  zfmak@amu.edu.pl

© Opisy i zdjęcia: Zakład Fizyki Makromolekularnej  | Ta stona używa ciasteczek
     Zaktualizowano: podstrony  2018-02-07  / bazę danych:   2018-02-14  by Webmaster: Zbigniew Fojud